2 A small investment problem

Example 2. Suppose you have \$5,000 to invest. Over the next 3 years, you want to double your money. At the beginning of each of the next 3 years, you have an opportunity to invest in one of two investments: A or B. Both investments have uncertain profits. For an investment of \$5,000, the profits are as follows:

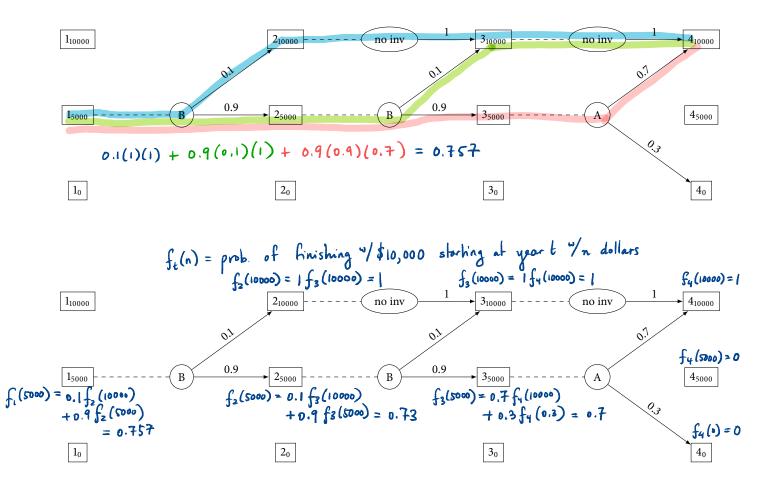
Investment	Profit (\$)	Probability	
А	-5,000 5,000	0.3 0.7	
В	0 5,000	0.9 0.1	

You are allowed to make at most one investment each year, and can invest only \$5,000 each time. Any additional money accumulated is left idle. Once you've accumulated \$10,000, you stop investing.

Formulate a stochastic dynamic program to find an investment policy that maximizes the probability you will have \$10,000 after 3 years.

2.1 Warm up

Consider the following investment policy. What is the probability of having at least \$10,000?



- 2.2 Formulating the stochastic dynamic program
 - Stages:

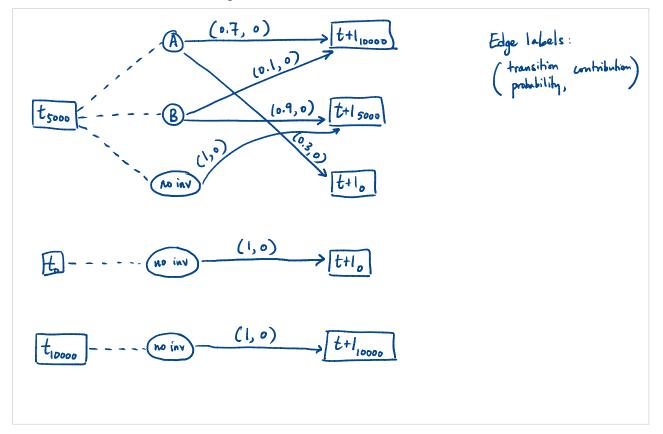
Stage t represents the beginning of year t
$$(t=1,2,3)$$
, or
the end of the decision-making process $(t=4)$

• States:

• Allowable decisions *x*_t at stage *t* and state *n*:

$$t=1,2,3$$
: Let $x_t =$ investment to make in year t
 x_t must satisfy:
 $x_t \in \begin{cases} fA, B, no investment \\ fn = 5000 \end{cases}$
 $x_t \in \begin{cases} fa, B, no investment \\ fn = 0, 10000 \end{cases}$
 $t=4$: No decisions

• Sketch of basic structure – transition probabilities and contributions:



• In words, the value-to-go $f_t(n)$ at stage *t* and state *n* is:

$$f_t(n) = \max \min probability of finishing "/$10,000, for t=1,...,4 and starting at year t with n dollars $n = 0, 5000, 10000$$$

• Value-to-go recursion

$$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \sum_{m \text{ state}} p(m \mid n, t, x_t) \Big[c(m \mid n, t, x_t) + f_{t+1}(m) \Big] \right\} \text{ for stages } t \text{ and states } n$$

$$f_{t}(soo) = \max \left\{ \begin{array}{l} 0.7 f_{t+1}(10000) + 0.3 f_{t+1}(0), 0.1 f_{t+1}(10000) + 0.9 f_{t+1}(5000), \\ \chi_{t} = A \\ \chi_{t} = B \end{array} \right.$$

$$f_{t}(soo) shuling \\ f_{t+1}(soo) f_{t+1}(soo) f_{t+1}(soo) f_{t+1}(soo) \\ \chi_{t} = 100 \text{ max} \right\} = f_{t+1}(10000) f_{t+1}(10000) \\ f_{t}(soo) = \max \left\{ 1. f_{t+1}(soo) f_{t+1}(soo) \right\} = f_{t+1}(soo) \\ f_{t+1}(soo) f_{t+1}(soo) f_{t+1}(so$$

• Boundary conditions:

$$f_{4}(10000) = 1$$
 $f_{4}(5000) = 0$ $f_{4}(0) = 0$
• Desired value-to-go function value: $f_{1}(5000)$

2.3 Interpreting the value-to-go function

• Solving the recursion on $f_t(n)$, we obtain:

t	п	$f_t(n)$	x_t^{\star}		t	n
1	0	0	no investment	7	2	100 00
1	5000	0.757	В		2	5000
1	10000	1	no investment			
2	0	0	no investment	-		
2	5000	0.73	В			
2	10000	1	no investment			
3	0	0	no investment	-		
3	5000	0.7	А			
3	10000	1	no investment			

• Based on this, what should your investment policy be?

Vear 1: Invest in B
Vear 2: If
$$n = 5000$$
, invest in B
If $n = 10000$, no investment $\begin{cases} \Rightarrow we're going to end up
in stales 5000 or 10000
in year 3
Vear 3: If $n = 5000$, invest in A
If $n = 10000$, no investment$

• What is your probability of having \$10,000?